SOLVING QUADRATIC EQUATIONS

A quadratic equation in x is an equation that may be written in the standard quadratic form $ax^2 + bx + c = 0$ if $a \neq 0$. There are four different methods used to solve equations of this type.

Factoring Method

If the quadratic polynomial can be factored, the **Zero Product Property** may be used. This property states that when the product of two factors equals zero, then at least one of the factors is zero.

If A and B are algebraic expressions, then AB = 0 if and only if A = 0 or B = 0.

Steps to solve quadratic equations by factoring:

- 1. Write the equation in standard form (equal to 0).
- 2. Factor the polynomial.
- 3. Use the Zero Product Property to set each factor equal to zero.
- 4. Solve each resulting linear equation.

Examples:

A. $x^2 + 5x = 24$	B. $9x^2 + 12 = 3 + 12x + 5x^2$	C. $3x^2 = 4 - 11x$
1. $x^2 + 5x - 24 = 0$	1. $4x^2 - 12x + 9 = 0$	1. $3x^2 + 11x - 4 = 0$
2. $(x+8)(x-3) = 0$	2. $(2x-3)(2x-3) = 0$	2. $(3x-1)(x+4) = 0$
3. $x + 8 = 0$ or $x - 3 = 0$	3. $2x - 3 = 0$	3. $3x - 1 = 0$ or $x + 4 = 0$
4. $x = -8$ or $x = 3$	4. $x = \frac{3}{2}$	4. $x = \frac{1}{3}$ or $x = -4$

Square Root Property

This property states: If A and B are algebraic expressions such that $A^2 = B$, then $A = \pm \sqrt{B}$. This method is used if the form of the equation is: $x^2 = k$ or $(ax + b)^2 = k$ (where k represents a constant)

Steps to solve quadratic equations by the square root property:

- 1. Transform the equation so that a perfect square is on one side and a constant is on the other side of the equation.
- 2. Use the square root property to find the square root of each side. REMEMBER that finding the square root of a constant yields positive and negative values.
- 3. Solve each resulting equation. (If you are finding the square root of a negative number, there is no real solution and imaginary numbers are necessary.)

Examples:

C. $x^2 - 16 = 0$	B. $(x+1)^2 = 49$	A. $(x-3)^2 = -28$
1. $x^2 = 16$	1. $(x+1)^2 = 49$	1. $(x-3)^2 = -28$
$2. \sqrt{x^2} = \pm \sqrt{16}$	2. $\sqrt{(x+1)^2} = \pm \sqrt{49}$	2. $\sqrt{(x-3)^2} = \pm \sqrt{-28}$
3. $x = \pm 4$	3. $x + 1 = 7$ or $x + 1 = -7$	$3. x - 3 = \pm 2i\sqrt{7}$
	x = 6 or $x = -8$	$x = 3 \pm 2i\sqrt{7}$

Completing the Square

This method may be used to solve all quadratic equations. ($ax^2 + bx + c = 0$, $a \neq 0$)

Steps to solve an equation by completing the square:

- 1. Transform the equation so that the quadratic term and the linear term equal a constant. $ax^2 + bx = -c$
- 2. Divide each term by the coefficient of the quadratic term if it is not a one. $x^2 + \frac{b}{a}x = -\frac{c}{a}$
- 3. Complete the square:
 - Multiply the coefficient of x by $\frac{1}{2}$ or divide it by 2. $(\frac{b}{2a})$
 - Square this value. $\left(\frac{b}{2a}\right)^2$
 - Add the result to both sides of the equation. $x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2$

• Express one side of the equation as the square of a binomial and the other as a constant. $\left(x + \frac{b}{2a}\right)^2 = k$ where k is the constant formed by $-\frac{c}{a} + \left(\frac{b}{2a}\right)^2$.

- 4. Use the square root property to find the square root of each side of the equation.
- 5. Solve each resulting equation.

Examples:

A. $x^2 + 12x + 2 = 0$ B. $x^2 = 2x - 6$ C. $2x^2 + 8x - 15 = 0$ 1. $x^2 - 2x = -6$ 1. $x^2 + 12x = -2$ 1. $2x^2 + 8x = 15$ 2. $x^2 + 4x = \frac{15}{2}$ 2. Lead coefficient is a one. 2. Lead coefficient is a one. 3. $x^2 + 12x + 36 = -2 + 36 4 \left(\frac{12}{2}\right)^2 = 36$ 3. $x^2 + 4x + 4 = \frac{15}{2} + 4 4 = \frac{4}{2} + 4 = 4$ 3. $x^2 - 2x + 1 = -6 + 1 4 \left(\frac{-2}{2} \right)^2 = 1$ $(x+2)^2 = \frac{23}{2}$ $(x-1)^2 = -5$ $(x+6)^2 = 34$ 4. $\sqrt{(x+2)^2} = \pm \sqrt{\frac{23}{2}}$ 4. $\sqrt{(x+6)^2} = \pm \sqrt{34}$ 4. $\sqrt{(x-1)^2} = \pm \sqrt{-5}$ $x - 1 = \pm i\sqrt{5}$ $x + 6 = \pm \sqrt{34}$ $x + 2 = \pm \sqrt{\frac{23}{2}}$ 5. $x = -6 \pm \sqrt{34}$ 5. $x = 1 + i\sqrt{5}$ 5. $x = -2 \pm \frac{\sqrt{46}}{2}$

Quadratic Formula

The quadratic formula, which also may be used to solve any quadratic equation, results from solving the quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$ for x by completing the square.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Examples:

A.
$$x^{2} + 6x = 16$$

 $x^{2} + 6x - 16 = 0$
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
 $x = \frac{-6 \pm \sqrt{b^{2} - 4(1)(-16)}}{2(1)}$
 $x = \frac{-6 \pm \sqrt{100}}{2}$
 $x = \frac{-6 \pm \sqrt{100}}{2}$
 $x = \frac{-6 \pm 10}{2}$
 $x = 2 \text{ or } x = -8$
B. $-x^{2} - 4x + 8 = 0$
 $x^{2} + 4x - 8 = 0$
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
 $x = \frac{-4 \pm \sqrt{4^{2} - 4(1)(-8)}}{2(1)}$
 $x = \frac{-4 \pm \sqrt{48}}{2}$
 $x = \frac{-4 \pm \sqrt{48}}{2}$
 $x = -4 \pm \sqrt{48}$
 $x = -4 \pm \sqrt{48}$
 $x = -2 \pm 2\sqrt{3}$

Practice Problems

1. $x^{2} + 6x + 9 = 0$ 2. $5x^{2} = 13x + 6$ 3. $x^{2} + 25 = 0$ 4. $x^{2} - x + 4 = 0$ 5. $x^{2} - 2x - 8 = 0$ 6. $x^{2} - 2x + 2 = 0$ 7. $2x^{2} - x - 1 = 0$ 8. $x^{2} = 4x - 12$ 9. $x^{2} + x - 4 = 0$ 10. $x^{2} + 10 = 6x$ 11. $x^{2} - 7x + 6 = 0$ 12. $-x^{2} + x + 6 = 0$ 13. $-3a^{2} + 5a - 2 = 0$ 14. $5y^{2} - y = 0$	15. $x^2 - 2x + 1 = 0$ 16. $2x^2 - 8x + 8 = 0$ 17. $-9y^2 - 6y - 1 = 0$ 18. $4a^2 - 12a + 9 = 0$ 19. $x^2 - 2x - 4 = 0$ 20. $a^2 + a - 5 = 0$ 21. $-r^2 + r + 1 = 0$ 22. $x^2 - 2 = 0$ 23. $x^2 + x + 1 = 0$ 24. $-z^2 + 2z - 7 = 0$ 25. $a^2 + 1 = 0$ 26. $4x^2 + 4x + 5 = 0$ 27. $3x^2 = 4x + 7$ 28. $x + 3 - \frac{5}{x} = \frac{x+3}{x}$	29. $6(x + 1)^2 + 7x = -9$ 30. $(x - 1)(x + 1) = 5(x + 1)$ 31. $x^2 + 25 = 10x$ 32. $y = \frac{9}{6-y}$ 33. $3r(r - 5) + 16 = -r$ 34. $x^2 + 4(x + 1) = 0$ 35. $x^2 - 3 = x$ 36. $x + 3 = \frac{3}{x}$ 37. $3a(a + 2) + 1 = 0$ 38. $m^2 + 1 = \frac{1-5m}{2}$ 39. $x = \frac{-4}{x}$ 40. $(x + 9)(x - 3) = -37$
---	---	--

1. $x = -3$	23. $x = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$
2. $x = 3$ or $x = -\frac{2}{5}$	24. $z = 1 \pm i\sqrt{6}$
3. $x = \pm 5i$	25. $a = \pm i$
4. $x = \frac{1}{2} \pm \frac{\sqrt{15}}{2}i$	26. $x = -\frac{1}{2} \pm i$
5. $x = 4$ or $x = -2$	27. $x = -1$ or $x = \frac{7}{3}$
6. $1 \pm i$	28. $x = -4$ or $x = 2$
7. $x = 1$ or $x = -\frac{1}{2}$	29. $x = -\frac{3}{2}$ or $x = -\frac{5}{3}$
$8. x = 2 \pm 2i\sqrt{2}$	30. $x = 6$ or $x = -1$
9. $x = \frac{-1 \pm \sqrt{17}}{2}$	31. <i>x</i> = 5
10. $x = 3 \pm i$	32. <i>y</i> = 3
11. $x = 6$ or $x = 1$	33. $r = \frac{8}{3}$ or $r = 2$
12. $x = 3$ or $x = -2$	34. $x = -2$
13. $a = 1$ or $x = \frac{2}{3}$	35. $x = \frac{1 \pm \sqrt{13}}{2}$
14. $y = 0$ or $y = \frac{1}{5}$	36. $x = \frac{-3 \pm \sqrt{21}}{2}$
15. $x = 1$	$-3\pm\sqrt{6}$
16. $x = 2$	$37. a = \frac{1}{3}$
17. $y = -\frac{1}{3}$	38. $m = \frac{-5 \pm \sqrt{17}}{4}$
18. $a = \frac{3}{2}$	39. $x = \pm 2i$
19. $x = 1 \pm \sqrt{5}$	40. $x = -3 \pm i$
20. $a = \frac{-1 \pm \sqrt{21}}{2}$	
21. $r = \frac{1 \pm \sqrt{5}}{2}$	
22 $x = \pm \sqrt{2}$	

22.
$$x = \pm \sqrt{2}$$