

1

Incenter Properties

- The three angle bisectors of a triangle intersect at the incenter.
- The incenter is equidistant from the sides of the triangle.
- Meaning, if you make a perpendicular segment from the incenter to each side of the triangle, the three perpendicular segments are of equal length.
- The incenter is always inside the triangle.
- If you draw a circle using the incenter as the center of the circle and a perpendicular segment as the radius, the result is an inscribed circle called the incircle.

Examples

- In the diagram, D is the incenter of $\triangle \mathrm{XYZ}$. Find $D B$.

- In the diagram, L is the incenter of \triangle EGJ. Find $H L$.

Centroid Properties

- Median: A segment whose endpoints are a vertex of the triangle and the midpoint of the opposite side.
- The three medians of a triangle intersect at the centroid.
- The centroid is two-thirds of the distance from each vertex to the midpoint of the opposite side.
- Meaning, the segment from the vertex to the centroid is twice as long as the segment from the centroid to the midpoint.
- The centroid is always inside the triangle.

Example

- Point G is the centroid of $\triangle A B C$ and $B G=6, A F=12$, and $A E=15$.

$$
\mathrm{FC}=\ldots \quad \mathrm{GF}=
$$

$$
B F=
$$

\qquad
\qquad

GE = \qquad

Example

- The medians of $\Delta X Y Z$ intersect at point $P, Y P=12, L X=15$, and $L Z=18$.

$L P=$ \qquad

Circumcenter Properties

- Perpendicular Bisector: A line, ray, or segment perpendicular to a segment at its midpoint.
- The three perpendicular bisectors of a triangle intersect at the circumcenter.
- The circumcenter is equidistant from the vertices of the triangle.
- Meaning, if you make a segment from the circumcenter to each vertex of the triangle, the three segments are of equal length.

7

Circumcenter Properties (Cont.)

- The circumcenter can fall inside of, on, or outside of the triangle.
- If you draw a circle using the circumcenter as the center of the circle and a segment from the circumcenter to a vertex as the radius, the result is an circumscribed circle called the circumcircle.

Acute triangle
P is inside triangle.

Right triangle
P is on triangle.

Obtuse triangle P is outside triangle.

Example

- The perpendicular bisectors of $\triangle \mathrm{MNO}$ meet at point S . Find:

Example

- G is the circumcenter of $\triangle A B C$. Find the following:

Orthocenter Properties

- Altitude: The perpendicular segment from a vertex of a triangle to the opposite side or to the line containing the opposite side.
- The three perpendicular altitudes of a triangle intersect at the orthocenter.
- The orthocenter can fall inside of, on, or outside of the triangle.

Acute triangle Pis inside triangle.

Right triangle P is on triangle.

Obtuse triangle P is outside triangle.

Fun Facts

- Fun fact \#1: The centroid, circumcenter, and orthocenter always lie on a line called the Euler line.
- Fun fact \#2: If the triangle is equilateral, then the circumcenter, centroid, and orthocenter are all the same point.
- http://www.mathopenref.com/eulerline.html

