\qquad

Honors Geometry
 Coordinate Proofs

Proving a Quadrilateral is a Parallelogram in the Coordinate Plane

Proving a Quadrilateral is a Parallelogram (need to show one of the below is true)

1. Both pairs of opposite sides are parallel
2. Both pairs of opposite sides are congruent
3. One pair of opposite sides are both parallel and congruent
4. Diagonals bisect each other

The vertices of quadrilateral $A B C D$ are given. Draw $A B C D$ on the coordinate plane. Then prove that it is a parallelogram by the method indicated.

1. $A(-3,2), B(1,2), C(0,-1), D(4,-1)$; Using: 1 pair of opposite sides are congruent \& parallel
2. $A(-1,4), B(3,2), C(3,-4), D(-1,-2)$; Using: both pairs of opposite sides are congruent
3. $A(-2,-3), B(0,5), C(6,5), D(4,-3)$; Using: both pairs of opposite sides are parallel
4. $A(-3,-4), B(-I, 2), C(7,0), D(5,-6)$; Using: diagonals bisect each other

Proving a Quadrilateral is a Rectangle in the Coordinate Plane

Proving a Quadrilateral is a Rectangle (need to show one of the below is true)

1. All angles are right angles
2. Show it is a parallelogram first. Then show the diagonals are congruent.
3. Show it is a parallelogram first. Then show one angle is a right angle.

Let's try a couple!

1. Show quadrilateral $P Q R S$ with vertices $P(1,7), Q(5,9), R(8,3)$, and $S(4,1)$ is a rectangle.
2. Show quadrilateral $A B C D$ with vertices $A(3,0), B(1,3), C(-5,-1)$, and $D(-3,-4)$ is a rectangle.

Homework:

1. Show quadrilateral $A B C D$ with vertices $A(4,3), B(4,-2), C(-4,-2)$, and $D(-4,3)$ is a rectangle.
2. Show quadriateral $W X Y Z$ with vertices $W(-2,4), X(5,5), Y(6,-2)$, and $Z(-1,-3)$ is a rectangle.
3. Show quadrilateral QRST with vertices $Q(-2,2), R(0,-2), S(6,1)$, and $T(4,5)$ is a rectangle.
