\qquad

Part 1: Don't Give Me Fractions...
If you ask someone their age, they seldom tell the truth. Although you might have been alive for 14 years, 6 months, 9 hours and 34 minutes, you'll probably say you're 14 years old. You are using the greatest integer function or $f(x)=[x]$. Its technical definition is "the greatest integer less than or equal to x ", but most people think of it as the "floor function" or "round down function", because that's what happens to x.

What is [6]? \qquad [5.9] = \qquad $[-3.4]=$ \qquad

Its graph appears to be a series of stair steps. Why is this so?

Part 2: Let's graph another step function ...
$\operatorname{Graph} f(x)=\left\{\begin{array}{cc}5 & x \geq 5 \\ 3 & 2<x<5 \\ 1 & x \leq 2\end{array}\right\}$

Domain: \qquad
Range: \qquad
Points of Discontinuity: \qquad
Intervals Constant: \qquad Intervals of increasing: \qquad

Part 3: Write the piecewise function ...
Write the step function as a piecewise function.

$$
f(x)=\{
$$

Part 4: Applications ...
You get paid to pick up recycling materials along the side of the road every day. You are given a bag each day to collect plastic bottles and aluminum cans in. If you collect 3 pounds or less than 3 pounds, you earn $\$ 8$. If you collect between 3 and 5 pounds, you get $\$ 12$ and if you collect 5 pounds or more than 5 pounds, you get $\$ 16$. Write a piecewise function and a graph that models your income.

The following application rounds up instead of down. In this example, the cost of t-shirts decreases per shirt as the number of shirts ordered increases.

a. If your club orders 40 t-shirts, what is the cost per shirt?
b. If your club orders 41 t -shirts, what is the cost per shirt?
c. Write the step function as a piecewise function.

$$
f(x)=\{
$$

Part 5: Least integer function ...
This is a graph of the least integer function or $f(x)=\lceil x\rceil$. Its technical definition is "the least integer greater than or equal to x ", but most people think of it as the "ceiling function" or "round up function", because that's what happens to x.

The t-shirt example above followed this notion. Can you think of other places in real life that follow either a greatest integer or a least integer model?

