\qquad

Warm-up: Find the missing side length.

2.

3.

Elevation vs Depression

The angle of elevation is the angle from the horizontal looking up to some object.

horizontal
The angle of depression is the angle from the horizontal looking down to some object.

In the diagram at the left, x marks the angle of elevation of the top of the tree as seen from a point on the ground.

It is always inside the triangle.

In the diagram at the left, x marks the angle of depression of a boat at sea from the top of a lighthouse.

It is always outside the triangle.

Why does it appear that an angle of elevation and an angle of depression are the SAME?

- parallel lines cut by a transversal
- Alternate Interior Angles are congruent

Applications of Trig- Side Lengths

Round all answers to the nearest hundredth.

1. At a point 20 meters from a flagpole, the angle of elevation of the top of the flagpole is 48°. How tall is the flagpole?
2. A woman looks out from the top of a cliff to the ocean below. In the distance is a boat. If the boat is 3200 feet from the base of the cliff and the angle of depression to the boat is 150 , what is the direct distance from the woman to the boat?
3. As it leans against a building, a 9-meter ladder makes an angle of 55° with the ground. How far up the building does the ladder reach?
4. An owl is located in a huge oak tree and sees a food bowl for dogs in the distance. If the base of the tree is 250 feet from the food bowl, and the angle of depression from the owl is 20°, then what is the direct distance from the owl to the food bowl?
5. A flagpole is at the top of a building. 400 ft from the base of the building, the angle of elevation of the top of the pole is 22° and the angle of elevation of the bottom of the pole is 20°. Determine the length of the flagpole (to the nearest foot).

