Classifying Polynomials Self-Guided WS

I. Tomorrow we will be adding and subtracting polynomials, in order to do that we must first learn about polynomials. Let's start at the beginning.

A <u>monomial</u> is a number, variable or product of numbers and variables. ex: 3, x, -20y, $4x^2$ Two monomials added together is called a <u>binomial</u>. ex: 3 + x, $2x^2 - x$, 3x - 2Three monomials added together are called a <u>trinomial</u>. ex: $x^2 + 3x - 7$, $3x^5 - 8x^2 + 16x$ More than three monomials added together are called a <u>polynomial</u>. ex: $-3x^3 + 2x^2 - 7x + 4$, $x^5 - 4x^3 + 3x^2 - 6x - 12$

Classify (name) the following polynomials by number of terms.

1. 3x-52. $6x^3-5x+2$ 3. $4x^4-3x^7+4x^2+x-2$ 4. $2x^3$ 5. $5x^5-13x+271$ 6. $144x^4-9$

II. We also classify polynomials by degree.

The largest exponent of a polynomial determines the degree of the polynomial.

- If the largest exponent is zero it is called <u>constant</u>. Ex. $12x^{0} = 12$
- If the largest exponent is 1 it is called linear. Ex: 3x
- If the largest exponent is 2, it is called Quadratic. Ex: $4x^2$
- If the largest exponent is 3, it is called <u>Cubic</u>. Ex: 3x³
- If the largest exponent is 4, it is called <u>Quartic</u>. EX: $2x^4$
- If the largest exponent is n, it is called nth degree. Ex: $3x^n$

Classify (name) the following polynomials by degree.

7. 3x-58. $6x^3-5x+2$ 9. x-210. $2x^3$ 11. $5x^2-13x+271$ 12. $144x^4-9$ 13. 51

Name

14.	Compl	lete	the	fol	lowing	table:
-----	-------	------	-----	-----	--------	--------

Polynomial	Leading	Degree	Classify by	Classify by
	Coefficient	0, 1, 2, 3	Degree	Number of Terms
$3x^2 + 5x - 7$				
2x ³				
$x^3 - 4x^2$				
$3x^3 + 2x^2 - 1$				
6				
-4x				
-123				
2x + 5				
3x ²				
3x ² – 4				

III. The order of a polynomial is important. We organize a polynomial in <u>standard form</u> which means that the terms are placed in descending order from largest degree to smallest degree.

Ex: $7x^5 - 3x^4 + x^3 - 2x^2 + 4x - 12$

15. Circle the following polynomials that are ordered in standard form. Rewrite the others in standard form.

$$1-2x$$
 $4x-2$ $3x^2-3x-3$ $4x^3-2x^4+6$

$$6x^{6} - 2x \qquad 5x^{5} - 8x^{4} - 3x^{2} + 4x^{3} - 1 \qquad 5x^{2} - 3x + 2$$