The Rational Root Theorem and The Fundamental Theorem of Algebra

The Rational Root Theorem
If $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ has integer coefficients, then every rational zero of $f(x)$ has the form:

$$
\frac{p}{q}= \pm \frac{\text { factors of } a_{0}}{\text { factors of } a_{n}}
$$

Example 1:
List th possible ational zeros of $f(x)=x^{3}-4 x^{2}-11 x+30$. Find the zeros.

$$
\begin{aligned}
& C \frac{p}{q}: \pm(1,2,3,5,6,10,15,30) \\
& \left.\quad 21 \begin{array}{rrr}
1-4 & -11 & 30 \\
2 & -4 & -30 \\
1 & -2 & -15
\end{array}\right) 0 \\
& \begin{array}{l}
x^{2}-2 x-15=0 \\
(x-5)(x+3)=0 \\
x=5 \quad x=-3
\end{array}\left\{\begin{array}{l}
\{3,2,5\}
\end{array}\right.
\end{aligned}
$$

Example 2:
List the possible rational zeros of $f(x)=15 x^{4}-68 x^{3}-7 x^{2}+24 x-4$. Find the zeros.

$$
\begin{aligned}
& \frac{p}{q}: \pm \frac{1,2,4}{1,3,5,15}= \pm\left(1,2,4, \frac{1}{3}, \frac{2}{3}, \frac{4}{3}, \frac{1}{5}, \frac{2}{5}, \frac{4}{5}, \frac{1}{15}, \frac{2}{15, \frac{4}{15}}\right. \\
& \frac{1}{5} \left\lvert\, \begin{array}{lllll}
15 & -68 & -7 & 24 & -4
\end{array} \longleftarrow\right. \text { degree } 4 \\
& -\frac{3}{3} \frac{3}{15}-65 \begin{array}{llll}
& -13 & -4 & 4 \\
15 & -20 & 20 & \leftarrow
\end{array} \text { degree } 3 \\
& \begin{array}{|cc|c}
\hline 15-75 & 30 & 0
\end{array} \text { degree } 2 \\
& 15 x^{2}-75 x+30=0 \\
& \begin{array}{l}
x^{2}-5 x+2 \\
x=\frac{5 \pm \sqrt{17}}{2}
\end{array}=0 \quad\left\{\frac{1}{5},-\frac{2}{3}, \frac{5 \pm \sqrt{17}}{2}\right\}
\end{aligned}
$$

