Solving Radical Equations
variable inside radical

1. Isolate the radical!
2. Square (or cube, etc) both sides.
3. Solve.
4. Check for extraneous solutions!!!!

$$
\left.\begin{array}{c}
\text { 1. } \sqrt{4 x+8}+9=11_{-9}^{9} \\
(\sqrt{4 x+8})^{2}=(2)^{2} \longleftarrow \text { isolate radical } \\
4 x+8=4 \quad \leftarrow \text { square both sides } \\
4 x=-4 \\
x^{=}-1
\end{array}\right\} \leftarrow \text { solve }
$$

Check:

$$
\begin{gathered}
\sqrt{4(-1)+8}+9=11 \\
\sqrt{4}+9=11 \\
2+9=11
\end{gathered}
$$

2. $\sqrt{5 x-7}-\sqrt{6 x+2}=0$
$(\sqrt{5 x-7})^{2}=(\sqrt{6 x+2})^{2}<i$ isolate bath v

$$
\begin{array}{cc}
5 x-7=6 x+2 & R_{\text {square both sides }} \\
-\lambda<x & \leftarrow \text { solve } \\
\varnothing & \frac{\text { Check: }}{} \\
\sqrt{\sqrt{5-9-9-7}}= \\
\sqrt{\overline{\hbar^{52}}}
\end{array}
$$

3.

$$
\begin{aligned}
& x-x \sqrt{7}=3 \\
& 1 x-\sqrt{7} \cdot x=3 \\
& \frac{(1-\sqrt{7}) \cdot x}{(1-\sqrt{7})}=\frac{3}{(1-\sqrt{7})} \\
& x=\frac{3}{\frac{(1-\sqrt{7}}{1-\sqrt{7}} \cdot \frac{(1+\sqrt{7})}{1+\sqrt{7}-\sqrt{1}-\sqrt{4})}}=\frac{3(1+\sqrt{7})}{-6} \\
& \begin{array}{l}
=\frac{1+\sqrt{7}}{2}=-\frac{1+\sqrt{7}}{2} \\
=-\frac{1}{2}-\frac{\sqrt{7}}{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. }-2 \sqrt{9 x+5}-9=-21 \\
& \frac{-2 \sqrt{9 x+5}}{-2}=\frac{-12}{-2} \quad \text {, isolate } \sqrt{ } \\
& (\sqrt{9 x+5})^{2}=(6)^{2} \longleftarrow \text { sql. both sides } \\
& 9 x+5=36 \quad>\text { solve } \\
& 9 x=31 \\
& x=\frac{31}{9} \\
& \text { Check: } \\
& -2 \sqrt{\frac{2.31}{2}+5}-9=-21 \\
& -2(6)-9=-21
\end{aligned}
$$

5. $\sqrt[3]{x-1}+\underset{-4}{4}=3$

$$
\begin{gathered}
(\sqrt[3]{x-1})^{3}=(-1)^{3} \\
x-1=-1 \\
x=0
\end{gathered}
$$

Check:

$$
\begin{array}{r}
\sqrt[3]{-1}+4=3 \\
-1+4=3
\end{array}
$$

6. $(\sqrt{4 x+5})^{2}=(x)^{2}$

$$
\begin{aligned}
& 4 x+5= x^{2} \\
& 0= x^{2}-4 x-5 \\
& 0=(x-5)(x+1) \\
& x=x \quad x<1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7. }(x+3)^{2}=(\sqrt{x+5})^{2} \\
& (x+3)^{2}=(x+3)(x+3) \\
& x^{2}+6 x+9=x+5 \\
& x^{2}+5 x+4=0 \\
& (x+4)(x+1)=0 \\
& x<-4 \quad x=-1
\end{aligned}
$$

