Exponential Applications

Formulas to Know!!

Exponential Growth Models

...used when a real-life quantity increases by a fixed percentage each year.

$$
y=a(1+r)^{t}
$$

a = initial amount $r=$ percent increase (expressed as a decimal)
$(1+r)$ is called the growth factor $t=$ time

Exponential Decay Models

...used when a real-life quantity decreases by a fixed percentage each year.

$$
y=a(1-r)^{t}
$$

$a=$ initial amount $r=$ percent decrease (expressed as a decimal)
$(1-r)$ is called the decay factor $t=$ time

Compound Interest

$$
A=P\left(1+\frac{r}{n}\right)^{n \cdot t}
$$

$A=$ final amount, $P=$ initial principal amount, $r=$ annual rate (decimal), $\mathrm{t}=$ time (in years), $\mathrm{n}=$ number of compounds per year

Continuously Compounded Interest

$$
A=P e^{r t}
$$

$$
\mathrm{A}=\text { final amount, } \mathrm{P}=\text { principal, } \mathrm{r}=\text { rate, } \mathrm{t}=\text { time (in years) }
$$

$$
\begin{gathered}
\frac{\text { Half-Life }}{\text { number of years }} \\
y=a\left(\frac{1}{2}\right)^{\frac{\text { half-life years }}{}} \\
\mathrm{y}=\text { final amount, } \mathrm{a}=\text { initial amount }
\end{gathered}
$$

