Honors Geometry Unit 1 Transformations in the Coordinate Plane Test Review
I. Find the coordinates of the reflection without using a coordinate plane.

1. $L(2,3)$ reflected in the x-axis
2. $M(-2,-4)$ reflected in the line x $=2$
3. $N(-4,0)$ reflected in the line $y=x$
4. $P(8.2,-3)$ reflected in y-axis
II. Draw $\triangle P Q R, \Delta P^{\prime} Q^{\prime} R^{\prime}$, and $\Delta P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ using the given transformations in the order they appear.
5. $P(5,1), Q(3,4), R(0,1)$
Translation: $(x, y) \rightarrow(x-2, y-4)$
Reflection: in the y-axis
6. $P(7,2), Q(3,1), R(6,-1)$

Translation: $(x, y) \rightarrow(x-4, y+3)$
Rotation: 90° clockwise about the origin

III. Write a rule for the translation.
7. 1 unit to the left and 1 unit up
9. 7 units to the left and 4 units down
8. 3 units down
10. 10 units right and 8 units up

IV. Rotations

11. Suppose $\triangle A B C$ has vertices $A(-8,-2), B(-5,-2)$, and $C(-8,-7)$. If $\triangle A B C$ is rotated 90° counterclockwise about the origin, what are the coordinates of the vertices of $\triangle A^{\prime} B^{\prime} C^{\prime}$?
V. Vocabulary

Image	Isometry	Pre-image	Reflection
Rotation	Transformation	Translation	

Use only the words in the above to fill in the blanks below.
12. \qquad A transformation of a figure that creates a mirror image over a line.
13. \qquad A transformation that slides each point of a figure the same distance in the same direction.
14. \qquad The mapping, or movement, of all points of a figure in a plane according to a common operation.
15. \qquad A figure before a transformation has taken place.
16. \qquad A distance preserving map of a geometric figure to another location using a reflection, rotation, or translation.
17. \qquad The result of a transformation.

Determine whether the figure has rotational symmetry. If so, state the rotations that map the figure onto itself.

Rotational Symmetry?	Rotational Symmetry? If yes, state the degree of rotation: of rotation:

Draw all lines of symmetry.

Draw a figure for the description. If not possible, write "not possible".

23. A trapezoid with exactly one line of symmetry.	24. A triangle with exactly two lines of symmetry.

In the diagram, lines r and s are parallel.
25. A translation maps $\overline{\mathrm{CD}}$ onto which segment?
26. Is the distance from C to r the same as the distance from C^{\prime} to r ? Explain.

27. Use the translation $(x, y) \rightarrow(x+1, y-7)$ to answer each question below.
a. What is the translation vector? \qquad
b. What is the image of $A(10,-4)$? \qquad
c. What is the image of A ' from part b, which would be called A "? \qquad
d. What is the pre-image of $C^{\prime}(-9,12)$? \qquad
28. Given $\triangle A B C$ with $A(-1,0), B(5,3)$, and $C(2,-4)$, find the vertices of $\Delta A^{\prime} B^{\prime} C^{\prime}$ given the transformation rules below. Then determine the type of transformation which occurred.
a. $(x, y) \rightarrow(x+11, y-5)$
$A^{\prime}=$ \qquad $B^{\prime}=$ \qquad $C^{\prime}=$ \qquad
Transformation: \qquad
b. $(x, y) \rightarrow(-x,-y)$
$A^{\prime}=$ \qquad $B^{\prime}=$ \qquad $C^{\prime}=$ \qquad
Transformation: \qquad
c. $(x, y) \rightarrow(y,-x)$
$A^{\prime}=$ \qquad $B^{\prime}=$ \qquad $C^{\prime}=$

Transformation: \qquad
d. $(x, y) \rightarrow(y, x)$
$A^{\prime}=$ \qquad $B^{\prime}=$ \qquad $C^{\prime}=$ \qquad
Transformation: \qquad
e. $(x, y) \rightarrow(-y, x)$
$A^{\prime}=$ \qquad $B^{\prime}=$ \qquad $C^{\prime}=$ \qquad
Transformation: \qquad

Write the transformation rule for the following graphs.
29.

30.

Follow the instructions for each graph.
31. Reflection, across $y=-x$.

33. $\langle 2,3>$

34. $(x, y) \rightarrow(x, y-4)$

Composition of Transformations

Remember to label/name the first transformation with $\Delta A^{\prime} B^{\prime} C^{\prime}$, the second transformation with $\Delta A " B " C "$.
35. a. Rotation 180°
b. reflection over $y=-1$

A' \qquad A" \qquad

B' \qquad B" \qquad
C' \qquad C" \qquad
36. a. reflection across $y=x$.
b. Rotation $90^{\circ} \mathrm{CW}$

A' \qquad
A" \qquad

B' \qquad
\qquad
C' \qquad
C" \qquad

