Honors Geometry Unit 1 Transformations in the Coordinate Plane Test Review

I. Find the coordinates of the reflection without using a coordinate plane.

- 1. L (2,3) reflected in the x-axis
- 2. M(-2, -4) reflected in the line x = 2
- 3. N (-4, 0) reflected in the line 4. P (8.2, -3) reflected in y-axis y=x

Draw $\triangle PQR$, $\triangle P'Q'R'$, and $\triangle P''Q'R''$ using the given transformations in the order II. they appear.

- 5. P (5, 1), Q (3, 4), R (0, 1) Translation: $(x, y) \rightarrow (x-2, y-4)$ Reflection: in the y-axis
- 6. P (7, 2), Q (3, 1), R (6, -1) Translation: $(x, y) \rightarrow (x-4, y+3)$ Rotation: 90° clockwise about the origin

III. Write a rule for the translation.

- 7. 1 unit to the left and 1 unit up 8. 3 units down
- 9. 7 units to the left and 4 units down
- 10.10 units right and 8 units up

IV. Rotations

11. Suppose $\triangle ABC$ has vertices A(-8, -2), B (-5, -2), and C (-8, -7). If $\triangle ABC$ is rotated 90° counterclockwise about the origin, what are the coordinates of the vertices of $\triangle A'B'C'$?

V. Vocabulary

Image	Isometry	Pre-image	Reflection
Rotation	Transformation	Translation	

Use only the words in the above to fill in the blanks below.

12	A transformation of a figure that creates a mirror image over a line.
13	A transformation that slides each point of a figure the same distance in the same direction.
14	The mapping, or movement, of all points of a figure in a plane according to a common operation.
15	_ A figure before a transformation has taken place.
16	A distance preserving map of a geometric figure to another location using a reflection, rotation, or translation.
17	_ The result of a transformation.

Determine whether the figure has rotational symmetry. If so, state the rotations that map the figure onto itself.

18.	19.	20.
Rotational Symmetry?	Rotational Symmetry?	Rotational Symmetry?
If yes, state the degree of rotation:	If yes, state the degree of rotation:	If yes, state the degree of rotation:

Draw all lines of symmetry.

Draw a figure for the description. If not possible, write "not possible".

23. A trapezoid with exactly one line of symmetry.	24. A triangle with exactly two lines of symmetry.

In the diagram, lines r and s are parallel.

27. Use the translation (x, y) \rightarrow (x + 1, y - 7) to answer each question below.

a. What is the translation vector?

b. What is the image of A (10, -4)? _____

c. What is the image of A' from part b, which would be called A"?

d. What is the pre-image of C' (-9, 12)?

28. Given $\triangle ABC$ with A(-1, 0), B(5, 3), and C(2, -4), find the vertices of $\triangle A'B'C'$ given the transformation rules below. Then determine the type of transformation which occurred.

a. $(x, y) \rightarrow (x + 11, y - 5)$	A' = B' = C' =
	Transformation:
b. (x, y) → (-x, -y)	A' = B' = C' =
	Transformation:
C. (x, y) → (y, -x)	A' = B' = C' =
	Transformation:
d. (x, y) → (y, x)	A' = B' = C' =
	Transformation:
e. (x, y) → (-y, x)	A' = B' = C' =
	Transformation:

Write the transformation rule for the following graphs.

Follow the instructions for each graph.

34. $(x, y) \rightarrow (x, y - 4)$

Composition of Transformations

Remember to label/name the first transformation with $\Delta A'B'C'$, the second transformation with $\Delta A'B'C'$.

35. a. Rotation 180°

b. reflection over y = -1

36. a. reflection across y = x.

